Journal of Organometallic Chemistry, 291 (1985) 191–198 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

LE LIGANDE ISOCYANURE DE BENZOYLE CNCOR

III *. SPECTRES DE VIBRATIONS ET CHAMP DE FORCE DE VALENCE DU PENTACARBONYLE CHROME(0) ISOCYANURE DE BENZOYLE: (CO)₅CrCNCOC₆H₅

P. CAILLET, J.Y. LE MAROUILLE,

Laboratoire de Chimie du Solide et Inorganique Moléculaire, Laboratoire Associé au C.N.R.S., No. 254, Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex (France)

et P. LEMAUX

Laboratoire de Chimie des Organométalliques, E.R.A. C.N.R.S., No. 477, Université de Rennes, Campus de Beaulieu, 35042 Rennes Cedex (France)

(Reçu le 14 janvier 1985)

Summary

Infrared and Raman spectra of pentacarbonylchromium(0) benzoylisocyanide were recorded and interpreted. A valence force field is calculated with the help of isotopic derivatives frequencies. The benzoylisocyanide ligand is similar to the carbonyl ligand for chromium, this results in electronic delocalization all along the C=N-C=O bonds. Comparisons with other ligands are made.

Résumé

Les spectres infrarouge et Raman du pentacarbonyl chrome(0) isocyanure de benzoyle sont déterminés et analysés. Un champ de force de valence est calculé à l'aide des fréquences de dérivés isotopiques. Le ligande isocyanure de benzoyle a, vis-à-vis du chrome, un comportement très voisin de celui du ligande CO; ceci est dû à une importante délocalisation électronique au niveau des liaisons C=N-C=O, tandis que la simple liaison C-C constitue une coupure avec l'autre système délocalisé: C_6H_5 .

^{*} Pour la première et seconde partie, voir respectivement les références 3 et 2.

Introduction

L'intérêt des ligandes isocyanure CNCOR du point de vue synthèse et catalyse a déjà été montré [1], et nous avons déjà publié et discuté des spectres de vibration du $(\eta^6$ -benzoate de méthyle) chrome(0) dicarbonyle isocyanure de benzoyle [2] ainsi que la structure du pentacarbonyle chrome isocyanure de benzoyle [3].

Nous présentons ici les spectres d'absorption infrarouge et de diffusion Raman du pentacarbonyle chrome isocyanure de benzoyle. Les différentes fréquences de vibrations sont attribuées en comparant les spectres du composé aux isotopes naturels avec ceux des dérivés du ligande CNCOR au carbone-13 et à l'azote-15. Un champ de force de valence a été calculé qui permet de rendre compte des fréquences observées pour tous les dérivés isotopiques étudiés. Nous discutons ensuite des délocalisations électroniques au niveau du ligande isocyanure et comparons son comportement vis-à-vis du chrome à celui des ligandes CNCH₃, CO, CS, CSe.

Partie expérimentale

Le pentacarbonyle chrome isocyanure de benzoyle a été préparé par synthèse sous pression de CO à partir du benzoate de méthyle chrome dicarbonyle isocyanure de benzoyle [4]. Les dérivés isotopiques au carbone-13 et à l'azote-15 ont été synthétisés par la même méthode à partir des dérivés correspondants du même composé [2].

Les spectres infra-rouge entre 4000 et 300 cm⁻¹ ont été réalisé sur un spectrophotomètre Beckman IR 12 sur des poudres mises en suspension soit dans le Nujol, soit dans du Kelf-oil, entre deux lames d'oidure de césium. La précision est de ± 1.5 cm⁻¹ pour les bandes fines.

Le spectre Raman entre 4000 et 100 cm⁻¹ a été réalisé à l'aide d'un spectrophotomètre Coderg équipé d'un laser He-Ne utilisé à une puissance voisine de 40 mW. La précision est de ± 1.5 cm⁻¹ dans les meilleurs cas.

Résultats

Les vibrations d'une molécule de pentacarbonyle chrome isocyanure de benzoyle peuvent se décrire, au moins en première approximation, à partir de celles d'un groupement (CO)₅CrL, d'un groupement C₆H₅L et les vibrations du ligande L. En effet, les carbonyles d'une part, le cycle benzénique d'autre part, conservent l'essentiel de leurs caractéristiques quelle que soit la nature de L. Leurs vibrations se déduisent simplement de celles bien connues du chrome hexacarbonyle [5] et du benzène [6].

Si on considère maintenant la molécule $(CO)_5 CrCNCOC_6 H_5$, comme elle ne possède aucun élément de symétrie, elle appartient au groupe C_1 et présente 72 vibrations de type A, toutes actives en infra-rouge et en Raman. La maille cristalline élémentaire, qui est aussi la maille primitive, contient quatre molécules [3]. Le groupe de site est C_1 et le groupe facteur C_{2h} ; aussi les vibrations A des quatre molécules vont se répartir également dans les quatre représentations irréductibles du groupe C_{2h} (Tableau 1). On voit que l'intervention de la symétrie cristalline doit amener à la fois une séparation des fréquences observées en infra-rouge et en Raman, et un dédoublement de chacune des vibrations précédentes aussi bien en infra-rouge qu'en Raman.

TABLEAU 1

Croupe moléculaire	Groupe de site	Groupe facteur		
<i>C</i> ₁	C_1 (×4 molécules)	$\frac{C_{2h}}{72A_{g}(Raman)}$		
72 <i>A</i> (IR,R)	72 4(ID B)	72 Bg (Raman)		
	12A(IK,K)	$72A_{u}(IR)$		
		$72 B_{\rm u}({\rm IR})$		

CORRÉLATION ENTRE LES VIBRATIONS DE LA MOLÉCULE (CO) $_5$ CrCNCO ψ ISOLÉE ET CELLES DE LA MAILLE PRIMITIVE CONTENANT QUATRE MOLÉCULES

Les fréquences observées sont rassemblées dans le Tableau 2. On remarque que les écarts entre les fréquences des vibrations observées à la fois en infra-rouge et en Raman sont au maximum de 10 cm⁻¹; par ailleurs, aucun dédoublement, même pour des bandes ou des raies fines, n'est observé dans les spectres. Ces deux constatations montrent que la symétrie cristalline perturbe très peu le spectre de la molécule. On peut donc raisonnablement interpréter le spectre à partir de celui d'une molécule et envisager le calcul d'un champ de force sur cette base. Nous avons donc effectué les attributions qui figurent dans le Tableau 2 et qui sont en parfait accord avec la constatation que la symétrie "locale" est bien conservée dans la molécule [3].

Le calcul d'un champ de force de valence a ensuite été effectué dans le but de vérifier la validité des attributions précédentes, de discuter des modes normaux de vibration et de préciser l'intensité des liaisons chimiques et les délocalisations électroniques dans le pentacarbonyle chrome(0) isocyanure de benzoyle. Outre les spectres du dérivé aux isotopes naturels, nous avons enregistré les spectres d'aborption infra-rouge de $(CO)_5 Cr^{13} CNCOC_6 H_5$, $(CO)_5 CrC^{15} NCOC_6 H_5$ et $(CO)_{s}CrCN^{13}COC_{6}H_{s}$. Le calcul a été conduit pour une molécule dont la géométrie correspond aux résultats cirstallographiques: les liaisons Cr-C d'une part et C-O d'autre part sont prises toutes identiques (respectivement 19.00 et 11.36 nm), les angles entre ces liaisons valent soit 90°, soit 180°. Le cycle benzénique est plan avec des liaisons C-C de 13.74 nm et C-H de 10.84 nm, tous les angles valent 120°. Les autres paramètres géométriques ont les valeurs déterminées dans ref. 3. Le champ de force de départ, pour la partie (CO)₅CrCN, comprend les 22 paramètres déterminés par Jones [5] pour Cr(CO)₆, plus 15 d'entre eux qui ont été individualisés pour les liaisons Cr-C-N. Pour la partie cycle benzénique, les 31 valeurs choisies sont celles de Caillet [7]. Les valeurs de 45 autres constantes de forces relatives à CNCO et aux interactions avec les coordonnées précédentes sont tirées de diverses publications [8]. Nous avons enfin introduit toutes les constantes d'interactions entre coordonnées ayant au moins un atome commun. Au total, le champ de force contient 128 paramètres.

Dès le premier calcul, il apparaît que les vibrations $\nu(CO)$ et $\nu(CN)$ sont obtenues à trop hautes fréquences, ce qui n'est pas surprenant puisque les constantes de forces de Jones [5] correspondent effectivement aux fréquences plus élevées observées pour $Cr(CO)_6$ vapeur. La diminution des constantes principales F(CO) et F(CN) et de la constante d'interaction f(CO-C'O') suffit à amener toutes les fréquences calculés au voisinage des valeurs observées.

FRÉQUENCES OBSERVÉES ET ATTRIBUTIONS. FRÉQUENCES CALCULÉES ET DISTRIBU-TION DE L'ÉNERGIE POTENTIELLE (DEP) (TOUTES LES FRÉQUENCES SONT INDIQUÉES EN cm⁻¹)

Attributions	Fréquences observées		Fréquences	DEP			
	Raman Infra-rouge		calculées				
			3062	98 v(CH)			
			3057	98 v(CH)			
		2960 tf	3056	98 v(CH)			
ν(CH)			3052	99 v(CH)			
		2948 tf	3051	99 ν (CH)			
$\nu(C\equiv N)$		2115 f	2113	82 $\nu(C \equiv N) + 10 \nu(N - C)$			
v _s (CO)	2008 m	2016 f	2018	87 $\nu(CO) + 10 \nu(C \equiv N)$			
			1975	$100 \nu(CO)$			
$\nu(CO)$	1977 F	1975 TF	1968	100 v(CO)			
			1959	$101 \nu(CO)$			
$v_{a}(CO)$	1952 f	1955 TF	1959	$101 \nu(CO)$			
ν (C=O)	1677 F	1687 F	1689	74 ν (C=O)+15 ν (C-C)			
8 <i>a</i>	1589 f	1600 f	1614	75 ν (CC ψ)+26 δ (CH)			
8 <i>b</i>		1570 f	1585	83 $\nu(CC\psi)$ + 24 $\delta(CH)$			
19 <i>b</i>		1543 f	1518	49 $\delta(CH)$ + 37 $\nu(CC\psi)$			
19 <i>a</i>	1443 f		1463	54 $\delta(CH)$ + 39 $\nu(CC\psi)$			
ligand $(+3)$		1330 m	1350	49 $\delta(CH)$ + 14 $\nu(N-C)$ + 14 $\nu(C=O)$ + 14 $\delta(CO)$			
3		1315 m	1310	7) $\nu(CC\psi) + 27 \delta(CH)$			
14		1268 f	1281	80 $\nu(CC_{4})$ + 30 $\delta(CH)$			
9a	1212 f	1215 m	1175	$68 \delta(CH) + 20 \nu(CC\psi)$			
15	1172 f	1177 m	1155	90 $\delta(CH) + 30 \nu(CC\psi)$			
15	11/21	11// 11	1083	$45 \ \delta(CH) + 45 \ \nu(CC/L)$			
18a		1055 m	1056	42 $\mu(CC_{1}/r) + 22 \delta(CH) + 12 \mu(N-C) + 10 m/r$			
12	1024 f	1055 11	1033	$42 \nu(ceq) + 22 \nu(cen) + 12 \nu(ten e) + 10 uq$ $63 \mu + 20 \nu(CC) \mu$			
1	1003 m	1010 E	1009	$65 u (CC_{1} + 18 a)$			
5	995 m	985 m	996	$100 \times (CH) + 22 \pi (CC/b)$			
17a	955 f	959 ff	956	95 $\gamma(CH) + 20 \gamma(CC/4)$			
174	///	<i>)))</i> (1	953	83 $\gamma(CH) + 17 \tau(CC_{1})$			
$\gamma(C=0)$		857 f	862	$37 \gamma(C=0) + 34 \tau(N-C)$			
/(c=0)		0271	839	88 v(CH)			
10a		835 tf	873	$30 \gamma(CH) + 14 \eta(N-C) + 13 \gamma(C=0)$			
104		706 m	700	$30 \gamma(CH) + 14 \nu(N-C) + 15 \gamma(C-O)$			
ligand	735 f	776 m 745 f	735	$31 \mu(C, C) + 30 \mu(Cr, CN) + 10 \mu(N, C)$			
11	1551	745 I 723 f	735	$72 \times (CH)$			
11		7251	707	$\frac{12}{10} \approx (CrCO) + 17 \approx (Cr-CO) + 14 \approx (CCrC)$			
~(C+CO)		607 m	607	$\frac{19}{20} \approx (CrCO) + \frac{17}{20} \approx (CrCO) + \frac{14}{11} \approx (CrCO)$			
$\alpha(CrCO) + 6$	a) 671 E	660 F	668	$30 \alpha(C(CO) + 17 \alpha(CCC) + 11 \nu(C(-CO))$			
	<i>a</i>)0/11	0001	624	$25 \mathrm{d}\psi + 17 \mathrm{d}(\mathrm{CICO}) + 15 \mathrm{P}(\mathrm{CI-CO}) + 10 \mathrm{d}(\mathrm{CCIC})$			
		505 F	607	$\frac{89}{20} = \frac{100}{20} = 10$			
		597 1	500	$22 \alpha(CrCN) + 21 \alpha(CrCO) + 19 \gamma(C=O)$			
60		387 11	590	$57 a\psi + 18 \theta(CO)$			
			540	$57 \alpha(CCC) + 32 \alpha(CCC)$			
	600 E	620	529	$52 \alpha(CCrC) + 24 \alpha(CrCO)$			
$\alpha(CCrC)$	522 F	528 m	527	$56 \alpha(CCrC) + 25 \alpha(CrCO)$			
	401		505	$67 \alpha(\text{CCrC}) + 17 \alpha(\text{CrCO})$			
$\alpha(UCrC)$	491 m	495 I	493	$33 \alpha(\text{UCrU}) + 21 \tau(\text{UU}\psi) + 17 \alpha(\text{CrU})$			
		440.4	478	29 α (NUC)+26 α (UCrC)+10 α (UrCO)			
a(CCrC)	105	440 t	431	45 $v(Cr-CO) + 26 \alpha(CCrC)$			
₽(CT-CO)	425 m	425 tf	430	45 $p(Cr-CO)+26 \alpha(CCrC)$			
			411	$/8 \nu(Cr-CO) + 1/\alpha(CCrC)$			
			410	$39 \tau (CC\psi) + 23 \gamma CH$			

TABLEAU 2 "

Attributions	Fréquences observées		Fréquences	DEP		
	Raman	Infra-rouge	calculées			
v(Cr-CO)		400 tf	400	$52 \alpha(CrCO) + 42 \nu(Cr-CO)$		
			399	54 α (CrCO)+45 ν (Cr-CO)		
			390	64 ν (Cr-CO)+22 α (CrCO)		
$\nu_{\rm s}({\rm Cr-CO})$	383 F	385 tf	387	53 ν (Cr-CO)+37 α (CrCO)		
		375 tf	371	93 α (CrCO)+22 ν (Cr-CO)		
	336 f	331 f	333	27 α (CrCO)+24 δ (C=O)+17 ν (C-C)		
				$+10 \nu (Cr-CN)$		
		261 tf	263	$30 \alpha(CrCO) + 24 \alpha(CCrC)$		
				+12 ν (Cr-CO)+11 α (CrCN)		
ligand						
-		232 f	230	46 ν (Cr-CN)+15 ν (N-C)		
	217 f		217	51 $\delta(C-C)$ +13 $\alpha(CNC)$		
	183 m		174	35 τ (N-C)+30 τ (C-C)+15 γ (CH)+10 γ (C=O)		
	106 m	111 f	106	60 α (CCrC)+38 α (CrCO)+18 ν (Cr-CO)		
			103	50 α (CCrC)+29 α (CrCO)+18 ν (Cr-CO)		
torsions et			101	70 α (CCrC)+40 α (CrCO)		
déformations			95	37 α (CCrC)+18 α (CrCO)+11 ν (Cr-CN)		
		86 F	84	45 α (NCC)+32 α (CrCO)+19 α (CCrC)		
			83	80 α (CCrC)+30 α (CrCO)		
		72 ep	66	63 α (CCrC)+47 α (CrCO)		
		•	63	48 α (CCrC)+13 α (CrCO)+12 ν (Cr-CN)		
		49 f	52	97 α(CCrC)		
			33	90 τ(CC)		
			28	43 α (CCrC)+42 α (CrCN)+18 α (CNC)		
			15	38 τ (N-C)+30 α (CrCN)		

^a Les vibrations du cycle benzénique sont désignées suivant la numérotation de Wilson [6] ν : vibration d'élongation; α ou δ : vibrations de déformation; γ : mouvements hors du plan; τ : torsion.

La matrice jacobienne montre alors que les quatre constantes d'interactions entre les liaisons du fragment CNCO interviennent pratiquement seules pour ajuster les effets isotopiques observés pour ce fragment. Ces constantes sont ainsi déterminées sans ambiguité et leur variation lors de ce calcul nécessite de faibles modifications des constantes de force principales des liaisons C=N, N-C, C=O et C-C pour conserver le bon accord entre fréquences observées et calculées pour les fréquences attribuées à ces liaisons. Nous avons vérifié que toute autre modification de constantes de force qui aurait pu permettre d'obtenir un résultat voisin amenait des désaccords entre fréquences observées et calculées dans d'autres régions du spectre, et particulièrement pour des fréquences entre 700 et 200 cm⁻¹. En conclusion, ce calcul permet, grâce à l'utilisation des molécules marquées sur le fragment CNCO, de déterminer sans ambiguité les constantes de force principales et d'interactions relatives aux liaisons pour ce fragment. Ceci illustre en outre la parfaite transferabilité des champs de force, en particulier pour les fragments Cr(CO)₅ et C₆H₅.

Nos résultats numériques sont rassemblés dans différents tableaux. C'est ainsi que les valeurs des fréquences calculées sont comparées aux fréquences observées dans le Tableau 2 qui indique également les distributions d'énergies potentielles calculées. Les effets isotopiques observés et calculés sont donnés dans le Tableau 3. Les valeurs des principales constantes de force de liaisons et d'interactions, ainsi que l'ordre des

TABLEAU 3

		$^{13}C \equiv N$		¹⁵ N		¹³ C=O	
		$\overline{\Delta_{obs}}$	$\Delta_{\rm calc}$	Δ_{obs}	$\Delta_{\rm calc}$	$\overline{\Delta_{obs}}$	$\Delta_{ m calc}$
$\overline{\nu(C\equiv N)}$	2115	30	32	29	31	3	2
$\nu_{s}(C\equiv O)$	2016	4	5	4	5	0	1
v(C=O)	1687	0	0	0	0	37	39
$\nu(N-C)$	1330	7	6	7	6	12	14
$(+\nu_3\psi)$							
v(C-C)	745	2	2	2	2	4	3

EFFETS ISOTOPIQUES OBSERVÉS ET CALCULÉS POUR TROIS DÉRIVÉS ISOTOPIQUES DU LIGANDE $\rm CNCOC_6H_5$ "

^{*a*} Les fréquences et les effets isotopiques sont donnés en cm⁻¹.

TABLEAU 4

PRINCIPALES CONSTANTES DE FORCE DE VALENCE ET D'INTERACTION DE LA MOLÉCULE (CO)₅CrCNCOC₆H₅ ^{*a*}

Constantes de force	Valeur	Indice de liaison	
Valence			
C≡O	15.90	2.50	
C≡N	15.95	2.65	
Cr-CO	2.10	1.04	
Cr–CN	2.20	1.09	
N-C	5.40	1.14	
C=O	10.15	1.78	
C-C	4.50	1.02	
C=C (cycle)	6.91	1.48	
Interactions			
Cr−CO, C≡O	0.69		
Cr−CN, C≡N	0.65		
$C \equiv N, N - C$	0.45		
N-C. C=O	0.45		
N-C, C-C	0.20		
C=O, C-C	0.25		
C-C, C = C (cycle)	0.20		
C = C (cycle) $C = C(cycle ortho)$	0.66		

^{*a*} Les constantes de force et d'interactions sont exprimées en md Å⁻¹.

liaisons chimiques, calculés selon la formule de Siebert [8], sont donnés dans le Tableau 4. (Le tableau complet des valeurs des constantes de forces peut êtres demandé à P. Caillet).

Discussion

Les fréquences calculées sont extrêmement proches des valeurs observées, sauf pour les vibrations d'élongations ν (CH) et pour trois vibrations de déformation δ (CH). Ceci s'explique par la formation de liaisons hydrogènes dans le solide, ce que L'examen des distributions d'énergie potentielle montre que les modes situés vers 1950-2000 cm⁻¹ sont parfaitement représentatifs des vibrations des carbonyles, le mode totalement symétrique comportant d'ailleurs 10% de $\nu(C\equiv N)$. Si, au niveau du ligande isocyanure, les vibrations $\nu(C\equiv N)$ et $\nu(C=O)$ sont bien représentées par les modes qui apparaissent à 2115 et 1680 cm⁻¹ respectivement, les vibrations $\nu(N-C)$ et $\nu(C-C)$ sont, par contre, très fortement couplées; c'est ainsi que $\nu(N-C)$ apparait dans six modes de vibrations qui sont situés à des fréquences très différentes: 2115, 1330, 1055, 745, 232 cm⁻¹. Ceci n'est pas exceptionnel; ainsi, dans le maléimide, la vibration $\nu(CN)$ apparaît à des énergies aussi diverses que 1712, 1350, 1155, 1065 et 415 cm⁻¹ [8c]. Les vibrations $\nu(Cr-C)$ et les déformations $\alpha(C-Cr-C)$ et $\alpha(Cr-C-O)$ sont très couplées, elles conduisent à des modes complexes entre 400 et 650 cm⁻¹ et participent à d'autres modes situés à basse fréquence. Enfin, les modes de vibrations faisant intervenir la partie C₆H₅ correspondent aux résultats trouvés habituellement pour un ligande phényle [8a].

La comparaison des constantes de force et des indices de liaisons fait apparaître la très grande analogie entre le ligande $CNCO\psi$ et les carbonyles vis-à-vis du chrome. En effet, non seulement les indices de liaisons Cr-CO et Cr-CN d'une part, $C\equiv O$ et $C\equiv N$ d'autre part, sont très proches, mais en outre la valeur élevée de la constante d'interaction Cr-C, $C\equiv O$, caractéristique d'une très grande délocalisation électronique, est quasi identique à celle obtenue pour Cr-C, $C\equiv N$. Cette valeur est d'ailleurs comparable à celle obtenue pour les interactions entre deux liaisons C-Cen *ortho* du cycle benzénique.

Si la liaison C=O du ligande isocyanure est proche d'une double liaison, par contre, la liaison N-C est proche d'une simple liaison, et la liaison C-C₆H₅ est exactement une simple liaison. En outre, les valeurs des constantes d'interactions C=N, N-C et N-C, C=O montrent une certaine délocalisation électronique qui est, par contre, inexistante entre la liaison C-C₆H₅ et les autres liaisons, les constantes d'interactions correspondantes ayant des valeurs faibles. On voit donc que cette simple liaison C-C constitue une coupure entre deux systèmes délocalisés: C=N-C=O d'une part, et C₆H₅ d'autre part. La délocalisation constatée sur C=N-C=O se poursuit jusqu'au chrome et elle rend parfaitement compte du retour π important observé pour le ligande CNCO ψ alors que ce phénomène est inexistant pour CNCH₃ [9].

Ces résultats sont en accord avec l'étude théorique de Saillard [11] qui concluait que le retour π important des ligandes CNCOR était dû essentiellement à la présence d'une liaison C=O en α de l'azote et non à la nature du ligande R.

Nous pouvons conclure de cette étude et des résultats précédents [2], que le ligande isocyanure de benzoyle a, vis-à-vis du chrome, un comportement qui, par rapport aux ligandes CO, CS et CSe [10], le situe entre CO et CS, mais relativement proche de CO. Ce comportement est dû à la présence de la double liaison C=O en position conjuguée avec la liaison C=N Ces résultats expérimentaux viennent illustrer et confirmer les conclusions des études théoriques et expliquent le comportement chimique de ces composés.

Bibliographie

- 1 P. Le Maux, G. Simmonneaux et G. Jaouen, J. Organomet. Chem., 217 (1981) 61.
- 2 P. Caillet et P. Le Maux, J. Organomet. Chem., 243 (1983) 51.
- 3 J.Y. Le Marouille et P. Caillet, Acta Cryst. B, 38 (1982) 267.
- 4 P. Le Maux, Thèse, Rennes, 1979.
- 5 L.H. Jones, R.S. MacDowell et M. Godblatt, Inorg. Chem., 8 (1969) 2349.
- 6 E.B. Wilson, Phys. Rev., 45 (1934) 427.
- 7 (a) J. Favrot, P. Caillet et M.T. Forel, J. Chim. Phys., 71 (1974) 1337; (b) P. Caillet. Proc. Nat. Conf. Vibrations Spectr., Madras (India), (1983) 12.
- 8 (a) P. Caillet et M.T. Forel, J. Chim. Phys., 72 (1975) 522; (b) M. Rey-Lafon, M.T. Forel et C. Garrigou-Lagrange, Spectrochim. Acta, A 29 (1973) 471; (c) L. Le Gall, P. Caillet et M.T. Forel, J. Chim. Phys., 75 (1978) 444.
- 9 P. Le Maux, G. Simmonneaux, P. Caillet et G. Jaouen, J. Organomet. Chem., 177 (1980) C1.
- 10 J.Y. Saillard, D. Grandjean, P. Caillet et A. Le Beuze, J. Organomet. Chem., 190 (1980) 371.
- 11 J.Y. Saillard, A. Le Beuze, G. Simmoneaux, P. Le Maux et G. Jaouen, J. Mol. Struct. Theochem., 86 (1981) 149.